
 1

Performance Measurements of CEMon
on an OSG Test Environment

Dec 14, 2006

Karthikeyan Arunachalam (University of Oklahoma)

Gabr iele Garzolio (Fermilab)

Introduction

The primary objective for this study is to check the impact of deploying CEMon on OSG.
This is done by studying machine parameters, such as load and memory usage, when
running CEMon and GRIS, the LDAP-based Globus MDS v2 monitoring server.

CEMon and GRIS are two independent information systems that gather local information
running a set of scripts called Generic Information Providers (GIP). Because the systems
use two different publication infrastructures, they are both needed at this time. The LDAP
server publishes information in LDIF format upon request (pull-model), while CEMon
for OSG pushes information in classad format to a central information repository.

This study addresses some concerns reported by OSG site administrators in running
CEmon on a typical OSG installation. Concerns include high load to the machine and
memory usage: high load could be generated by calling the GIP scripts twice, by GRIS
and CEMon; high memory usage could result from CEMon, which runs Web Services
interfaces in a Tomcat engine.

Summary of conclusions:

We verified that running CEMon and GRIS together does not significantly impact the
average load of the machine. We measured a load increase of 10% with respect to
running GRIS only. Also, we have concluded that running CEMon alone uses more
memory than GRIS, but does not generate a higher average load to the machine.

Test conditions:

We ran tests of the monitoring services under two conditions:

The first condition (round 1) simulates a "busy" OSG environment that interoperates
with LCG. GRIS is queried continuously to simulate connections from about 100 LCG
brokers. GRIS Caching parameters are configured as follows: freshness = 300; cache_ttl
= 600. CEMon publishes information to a central resource selection server every 10
minute.

 2

The second condition (round 2) is useful to compare monitoring technologies, as the
different monitoring servers are configured to publish information at the same rate (once
every 10 minutes, like cemon by default). CEMon test conditions are the same as for
round 1.

Content

In section (A) of this report we describe the test environment. This includes information
about the server, client and data collection.
Section (B) explains the test rounds and test cases, including the starting environment of
the tests and background load.
Section (C) and (D) present test results for test round 1 and 2 respectively.
Section (E) deals with the details of the background load measurements.
Section (F) provides a conclusion for the report
Acknowledgements are contained in section (G) and appendix containing the data plots
in section (H).

A) Test environment

The test bed consists of two machines. The server machine runs the monitoring services;
the client machine runs the clients to the GRIS monitoring service. The duration of each
test case is 1 hour. Machine parameters (memory, load, etc.) are acquired every 10
seconds using Linux command line tools, such as 'uptime', 'ps', and 'top'.

These are the specification of the machines and the software installed.

Sever: ouhep1
Dual processor
Model name : Pentium III (Coppermine)
Cpu MHz : 996.593
Cache size : 256 KB
Memory : 1 GB
OS : Scientific Linux Release 3.0.4 (Fermi)

Client: ouhep5
Dual processor
Model name : Pentium III (Coppermine)
Cpu MHz : 996.578
Memory : 1 GB
OS : Scientific Linux Release 3.0.4 (Fermi)

Software configuration:
OSG version: 0.5.1
The jobmanager scripts used by GIP is condor.
GIP is NOT configured to publish SRM

 3

B) Descr iption of the tests

Two test conditions (rounds) were created and measured.

Test round 1

Objective: measure machine parameters when running monitoring servers on a "busy"
OSG environment.

A total of 15 test runs were conducted. Each test run consisted of 4 test cases as
explained below. Each test case was conducted for a duration of 1 hour, with data
measurements taken every 10 seconds (360 per hour).

Test cases for Test round 1

1) Run CEMon only. CEMon publishes information in old classad format
(OLD_CLASSAD dialect from the OSG_CE sensor) to the information repository of
ReSS, the OSG Resource Selection Service. More information on the architecture of
ReSS at http://osg.ivdgl.org/twiki/bin/view/ResourceSelection/
2) Run GIP by hand only. GIP commands are run continuously i.e. as soon as one
command finishes, the same command is executed again.
3) Run GRIS only (run GRIS on server and ldapsearch on client). ldapsearch is run
continuously from the client to simulate LCG brokers querying the OSG monitoring
system.
4) Run Both CEMon and GRIS (run GRIS,CEMon on server and ldapsearch on
client)

Test round 2

Objective: compare CEMon characteristics with LDAP server when publishing
information at the same rate.

A total of 2 test runs were conducted, each test run consisting of 3 test cases. Each test
case was conducted for a duration of 1 hour with data measurements taken every 10
seconds (360 per hour).

Test cases for Test round 2

1) Run CEMon only. These measurements are the same as in round 1
2) Run GIP by hand only. GIP commands are run once every 10 minutes .
3) Run GRIS only (run GRIS on server and ldapsearch on client). ldapsearch is run once
every 10 minutes from the client machine.
4) Run Both CEMon and GRIS (run GRIS,CEMon on server and ldapsearch on
client)

 4

Starting condition for both test rounds and for all test cases

Server running : xinted, condor_collecor/negotiator, globus GK, NIS, NFS
Server NOT running: CEMon, LDAP server (i.e. GRIS or GRIS), condor jobs

These processes account for the background load - see section (E) for more details on
background load.
C) Test results for round 1: simulation of an OSG site

This section presents measurements of load, percentage of CPU and memory usage for all
four test cases.

1) Machine Load

The three subsequent numbers reported below refer to the load averaged over 1, 5, 15
minutes, as presented by 'uptime'. Note that the max value presented is mostly affected by
the background.

Table 1
Test
Case

Descr iption Number of
Measurements
(Taken once
every 10
seconds)

Average of system
load averages for the
past ‘N’ minutes

Maximum of system
load averages for the
past ‘N’ minutes

 N=1 N=5 N=15 N=1 N=5 N=15
1. Run CEMon

only
4785 0.53 0.55 0.58 8.07 2.94 1.67

2. Run GIP
only,
continuously*

4686 1.83 1.74 1.47 8.65 4.78 3.49

3. Run GRIS
only,
continuously

4772 1.14 1.18 1.28 7.20 4.96 3.62

4. Run Cemon
and Run
GRIS
continuously

4730 1.20 1.19 1.17 9.98

5.67 4.33

* The next instance of the process is started immediately after the current instance is
finished.

2) %CPU and %MEM Consumption

These averages per run were calculated by measuring the load using the command 'top'
once every 10 seconds. Note that the max value presented is mostly affected by the
background.

 5

Test case 1 - Run CEMon only

Average %CPU 0.806667
Average %MEM 4.68667
Max %CPU 0.9
Max %MEM 5.1
Test case 2 - Run GIP by hand only

These measurement were gathered by running GIP command continuously for 15 hours.
During this time period, the command was run 759 times. The average values calculated
this way is close to the average values measured when running the command once.

Average time per run: 71.15 seconds
Average %CPU (4686 total measurements using ps auxww): 92.1992
Max %CPU (4686 total measurements using ps auxww): 99.99
Average %MEM (4686 total measurements using ps auxww): 0.4

Test case 3 – run GRIS only

Average %CPU 24.76
Average %MEM 0.56
Max %CPU Max 25.5
Max %MEM Max 0.6

Test case 4 - run both CEMon and GRIS

CEMon:
Average %CPU 0.826667
Average %MEM 4.68667
Max %CPU 0.9
Max %MEM 5.1

GRIS:
Average %CPU 24.5467
Average %MEM 0.546667
Max %CPU 25.6
Max %MEM 0.6

D) Test results for round 2 - Compar ison of monitor ing system

As discussed in section B, under these test conditions servers gather information every 10
minutes. These measurements are mostly useful to compare the performance of different
monitoring technologies, because all servers are configured to publish information at the
same rate.

 6

Table 2
Test
Case

Descr iption Number of
Measurements
(Taken once
every 10
seconds)

Average of system
load averages for the
past ‘N’ minutes

Maximum of system
load averages for the
past ‘N’ minutes

 N=1 N=5 N=15 N=1 N=5 N=15
1. Run

CEMon
only *

4785 0.53 0.55 0.58 8.07 2.94 1.67

2. Run GIP
only, by
hand every
10 minutes

1432 0.56 0.54 0.53 4.92 1.66 1.00

3. Run GRIS
only, by
hand every
10 minutes

1432 0.52 0.52 0.51 4.76 1.90 1.15

4. Run
CEMon.
Run GRIS,
by hand
every 10
minutes

1432 0.60 0.58 0.51 5.63

2.61 1.51

* Data for CEMon is the same as that of round 1: no new measurements were taken.

E) Background Load

We call 'background load' the load of the server machine during day to day operations.
This is the list of processes running on the machine.

Processes running : xinted, condor_collecor/negotiator, globus GK, NIS, NFS, GridCat
jobs
Processes NOT running: CEMon, LDAP server (i.e. GRIS or BDII), condor jobs

The average of the background load was calculated using 3574 measurements.
Background load averages (averages of 1 min, 5 min, and 15 min average):
0.46 0.44 0.41

 7

Background data plot: (3574 measurements)

A regular pattern of spikes were noted for the background load. These spikes might be
related to GridCat jobs running on the machine via the gatekeeper. Because of the
predominance of these spikes, we believe that subtracting the background from the
measurement traces does not lead to reliable results.

F) Conclusions

1) The average load from the round 2 test cases 1,2,3 are within 10% of one another.
Since these represent the average load to the machine when CEMon, GRIS, and GIP
gather monitoring data at the same frequency, we conclude that running CEMon alone
does not generate more load than the other services.

2) Running CEMon on the same machine where GRIS runs does not significantly
increase the machine load. When continuously queried, running GRIS alone contributes
to an average load of 1.1. The load when running the services together is 1.2.

3) The average load to the machine is smaller when running CEMon alone (avg. 0.5) than
when running a GRIS that is queried continuously (avg. 1.1). Both servers generate lesser
load than when running GIP by hand continuously (avg. 1.8): this is expected because the
both servers cache data.

4) CEMon uses less %CPU than a GRIS that is queried continuously (0.8% vs. 24%). On
the other hand, CEMon uses more memory (%4.7 vs. %0.5). This is not surprising
because CEMon is run within Tomcat offering web services interfaces. These
technologies are well known to be memory intensive.

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000

avg1

avg5

avg15

 8

G) Acknowledgments

Gabr iele Garzolio (Fermilab)
Provided the motivation to conduct the test cases, defined what to measure and provided
the overall test guidelines and clarifications.

Karthikeyan Arunachalam (University of Oklahoma)
Created the testing scripts, conducted the tests and analyzed the test results

Horst Sever ini (University of Oklahoma)
Provided the overall test environment. Participate with helpful insights during the tests
and analysis of test results.

Tanya Levshina (Fermilab)
- Provided help with CEMon and GIP.

Joel Snow (Langston University)
- Provided guidelines for background load measurements.

Steven Timm (Fermilab)
- Provided feedback during the analysis of test results.

Pat Skubic, Mike Strauss (University of Oklahoma)
- Provided general help and support.

H) Appendix

1. How 'top' data was collected

cemonPid=`ps auxww|grep tomcat|grep java|grep -v grep|awk '{ print $2} '`
CEMonTopData=`top -n 1 -b -p $cemonPid |egrep -i "java"`

gipPid=`ps auxww|grep lcg-info-generic|grep -v grep|awk
GIPTopData=`top -n 1 -b -p $gipPid |egrep -i "perl"`

grisPid=`ps auxww|grep "slapd -h"|grep 0:2135|grep -v
GRISTopData=`top -n 1 -b -p $grisPid |egrep -i "slapd"`

2. How 'ps auxww' data was collected

cemonPs=`ps auxww|grep java|grep tomcat|grep -v grep`
grisPs=`ps auxww|grep "slapd -h"|grep 2135|grep -v grep`
gipPs=`ps auxww|grep "lcg-info-generic"|grep "osg-info-generic.conf"|awk
'{ print $1,$2,$3,$4,$9,$10} '`

 9

3. Other observations

There were at least 3 instances noted where the ldapsearch from the
Client hanged up the GRIS related 'slapd' process on the server. The process
would consume a considerable percentage of the CPU. We have to kill it by an explicit
kill command.

4. Data Plots
(5 Test runs (each representing an1 hour timeframe) were randomly chosen for the plots
for each test case)

Load vs Time Plots for Test case 1 – Time is in seconds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 10

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 11

Load vs Time Plots for Test case 2 – Time is in seconds

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 12

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 13

Load vs Time plot for Test case 3 – Time is in seconds

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 14

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 15

Load vs Time plot for Test case 4 – Time is in seconds

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 16

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500

avg1

avg5

avg15

 17

Test case 1 – Time (in seconds) vs %CPU, %MEM plot:

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 18

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 19

Test case 2 – Time (in seconds) vs %CPU, %MEM plot:

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 20

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 21

Test case 3 – Time (in seconds) vs %CPU, %MEM plot:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

%cpu

%mem

 23

Test case 4 – Time (in seconds) vs %CPU, %MEM plot:

0

1

2

3

4

5

6

0 1000 2000 3000 4000

%cemonCpu

%cemonMem

%grisCpu

%grisMem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000

%cemonCpu

%cemonMem

%grisCpu

%grisMem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

%cemonCpu

%cemonMem

%grisCpu

%grisMem

 24

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1000 2000 3000 4000

%cemonCpu

%cemonMem

%grisCpu

%grisMem

0

1

2

3

4

5

6

0 1000 2000 3000 4000

%cemonCpu

%cemonMem

%grisCpu

%grisMem

