Building Solutions for Researchers with a Science Gateway

John McGee, Jason Reilly, Mats Rynge
Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

1. Introduction

One important goal for the TeraGrid (TG) Science Gateways program’ is to bring the capabilities of this national
cyberinfrastructure (Cl) to the forefront of scientific discovery and scholarly efforts of a broad and growing
community of researchers, students, and educators. The TG Gateway program is addressing a critical need for
greater accessibility of the national resources for researchers from many science domains, with a wide distribution
of information technology (IT) skills, experience, and most importantly, level of interest. The RENCI Engagement
Team has enjoyed a broad perspective of these challenges through our participation in the TeraGrid Science
Gateway effort, and by leading the Engagement program for the Open Science Grid (0SG)~.

First generation TeraGrid science gateways were primarily web portal applications integrated with TG resources for
computation, data analysis, and visualization. In our experience, the usage model of a web portal has proven to be
valuable in education and exploratory scenarios, but has also proven to be very unlikely to achieve a sustained and
meaningful impact on researchers working towards scientific discovery. These researchers typically have an
existing work process pipeline for their applications and data running on lab, departmental, and/or campus level
resources, which they are reluctant to recreate or recast around a web user interface.

Guided by these efforts, we have developed a technology platform, and a methodology of working closely with
researchers over a short period of time to bridge the gap between user readiness and Cl capabilities on an
individual basis. We have determined that broad adoption of Cl concepts and technologies most often requires an
embedded effort to develop the skills of students, faculty, and the IT organizations of the campuses that host
them. Both infrastructure providers and consumers must be immersed in building and delivering the end-to-end
processing and data management capabilities needed for scientific discovery. We have recently begun applying
this Embedded Immersive Engagement for Cyberinfrastructure (EIE-4CI)> methodology to the RENCI TeraGrid
Science Gateway, which has changed our perspective and development path for the Gateway.

By implementing EIE-4Cl with the TeraGrid Gateway, we consider the portal, infrastructure, and services as a
toolbox to be used in the engagement process, not as a turnkey solution. We work together with researchers to
understand their usage models, embed gateway services into their work process pipeline, and assemble new
capabilities as needed. Each engagement enriches the toolbox for the next, and builds important relationships
between Cl providers and consumers, facilitating mutual trust and understanding. These relationships are critical
to evolving the fundamental Cl requirements and ensuring that the national cyberinfrastructure maintains a
sustainable and growing impact in the research and educational technology ecosystem. In this paper, we describe
the architecture of the RENCI Science Portal, a technology platform that the Engagement Team uses to rapidly
assemble powerful solutions for researchers backed by the nation's most capable cyberinfrastructures. We also
describe two example engagements using this platform, and address some open issues and future plans.

2. The RENCI Science Portal Architecture
2.1 Overview

The RENCI Science Portal provides a highly scalable platform to rapidly assemble TeraGrid powered solutions for
researchers. Figure 1 below diagrams the architecture of the platform. One way to think of a science gateway, is as
a broker of value added services between Cl providers and Cl consumers. As such, the RENCI Science Portal
platform (the platform) interfaces with Cl providers using the necessary advanced Grid technologies and protocols,
yet the flexible and numerous interfaces for Cl consumers are commodity and traditional IT based technologies
and protocols, enabling broader adoption, and integration with a wide array of open source and commercial
tooling that may be in use by the Cl consumers.

2.2 Generating Platform Components From Application Metadata

The North Carolina Bioportal4, the predecessor to the RENCI Science Portal, was based on the PISE> XML tool, a
collection of metadata captured in XML detailing Biolnformatic command line applications. It was used to build
and run CGI scripts which were submittable over http requests. PISE is generative, meaning that to add new
command line applications, all that is required is to write a new XML file based on a schema definition, then run
the built-in generators. There were however some limitations in the implementation, including I/O overhead for
reading and validating the xml at runtime, shelling out to run perl scripts (parameter evaluations) at runtime,
difficulty in maintaining the XML schema, generative tasks are build-time only, and discontinuity of programming
languages. Finally, PISE development seems to have been discontinued as of 2003. The new platform builds
extensively upon this generative philosophy to rapidly introduce new applications and capabilities, and enable
such a large and complex system to be managed and supported with surprisingly little effort.

The Annotations® feature was introduced to the Java programming language starting with version 1.5, and is an
interface that enables developers to add metadata to software code. Java Annotated code can be used for
compile-time, deployment-time or runtime information processing. The new platform has replaced PISE XML with
a set of customized Java Annotations. Replacing PISE allows for a more flexible source of command line application
metadata, and maintenance is improved due to the strongly typed nature of Java, and compile-time errors are
exposed immediately. Integrating additional command line applications is less rigid since altering the annotations
themselves is part of the same code base.

The RENCI Science Portal infrastructure builds upon these annotations to generate various secure accessors’ to
launch command line applications. This includes generating JSR-168 compliant portlets, asynchronous and
synchronous web services, and BioMoby8 web services. These annotations are also used at runtime by a number of
Java Swing desktop applications, and to generate documentation for the web portal, TG Gateway Web Service
Registry9 metadata, and application requirements that are used in the MatchMaking10 process. There are currently
127 science applications available by these various mechanisms within the RENCI Science Gateway. Based on
demand, adding new generative modules would enable the introduction of additional access mechanisms across
all of these applications (eg Google Gadgets or other Web 2.0 client technologies).

oa,as“

@:jf |
ss'&‘:;"{;‘& f v’d&é

& : & [:t _ We:;:;:ke ﬁ

Java
— Web Start Wl Services i Synchronaus anly
Deployment Y Y
g ng it Cornruting
[Portal Glide-in Factory
.

AuthNZ

JobMgmt

Accounting compute [5]= Compute [5]&
- Resaurce Resource

p—
TeraGrid TeraGrid

Figure 1: RENCI Science Portal Platform Architecture
2.3 Hosted Service Layer

The web service layer acts as an integral part of the RENCI Science Portal infrastructure. The generated web
services authenticate against the platform account management system and are available to be called securely
over an HTTPS transport in one of two ways: asynchronously or synchronously. An asynchronous web service
invocation returns a jobld, and upon invocation, persists to a database any parameters and files associated with
that job. The new record in the database generates a unique jobld, which is sent as a Java Message Service (JMS)
ObjectMessage to a Topic deployed on a JBoss Portal server. Before acknowledging the new message in a
configured JMS Messagelistener, the job is wrapped in a Runnable thread and executed via a ThreadPoolExecutor.
This Runnable is comprised of three tasks. The first task is to submit the job to a local Condor™ queue using
BirdBath'*. The second task is to monitor the state of that job and persist the status back to the database when the

job changes to a done or failed status. And lastly, the Runnable persists output information. For these
asynchronous invocations, a user can make separate synchronous web service calls to check the status of a
submitted job as well as download the results programmatically when the job has completed.

Invoking synchronous web services in the RENCI Science Portal behaves much in the same way as the
asynchronous web services except that instead of sending a JMS message to a Topic, the service submits directly to
the local Condor queue. With the synchronous invocation, the client connection to the web service must be
maintained for the web service to successfully return the output. If the client connection is broken, the service will
continue to run and the user can download the results by logging into the Portal with a web browser, however the
client that invoked the synchronous service will not be able to access the results.

2.4 Science Desktops

The RENCI Science Desktops are a set of Java Swing client applications, launched via Java Web Start (JWS) through
a web browser. The Science Desktops provide a rich user interface enabling researchers to securely interact with
the Gateway from their desktop. All interactions with the gateway layer require the user to present their RENCI
Science Portal username and password each time the JWS desktop application is launched (credentials are not
persisted on the client), and all data transfers occur over a standard secure socket layer (SSL, port 443). The
current set of Science Desktops include: BLASTMasterDesktop, NLPDesktop, RENCIDesktop, and
LifeSciencesDesktop, and they operate by calling into the asynchronous web services of the platform to submit
jobs, and the synchronous web services to monitor job status and download results when the jobs have
completed. These specialized interfaces are relatively easy to create due to: the reliance upon the gateway service
layer; application specific aspects are generated from the Java Annotations as described in section 2.2; and code
reuse - general behaviors such as authentication, client side preferences, multithreaded file upload, and multi-job
submissions, are shared among the various desktops. These desktop applications enable us to provide a highly
specialized environment that delivers a very specific thin slice of the national cyberinfrastructure capability to
researchers, as motivated by the use case in section 3.1 below.

2.5 Submitting Jobs to TeraGrid, Open Science Grid, RENCI, UNC-CH Resources, and Beyond

All jobs coming into the platform are loaded into the Condor pool, which starts off as a pool with zero resources,
and resizes dynamically (in both directions) using Condor glide-insl?’ based on the pending workload. The glide-in
factory is the component of the platform that manages the glide-ins and is loosely based on the Glideinwms*
system. It consists of a daemon monitoring the state of the gateway job queue, the glide-in job queue, and the
state of submitted glide-ins within the system. When the glide-in factory determines that more glide-ins are
needed, available resource descriptions are read in from a database, and the resource set is narrowed down to a
subset based on the requirements of the job. For example, if a job states that it requires science applications and
file databases, only resources which can meet those requirements are kept in the resource set. Note that the
assertion that an application has such a requirement originates with the application metadata via Java
Annotations, and that any required applications and databases are pre-installed by the Engagement Team on the
target resources. Next, each resource is assigned a score based on the state of current glide-ins at the resource, a
multiplication factor used to prefer resources over others, and an assigned max allowed glide-ins for the resource.
The resource with the highest score will be the one that the glide-in is submitted to as a Condor-G job, and
ultimately as a GRAM2" job.

Glide-ins can be sent to the TeraGrid, Open Science Grid, BASS™ (an NIH sponsored resource in the computer
science department at UNC Chapel Hill), and local resources at RENCI. Each infrastructure has its own set of
policies that must be accounted for as decisions about new glide-ins are made. One policy example is that BASS
will only service users who have a grant funded by NIH, so the gateway has a mechanism to capture voluntarily
offered NIH award numbers and will include/exclude BASS from scheduling decisions based on the availability of
an NIH award number from the user that is interacting with the gateway (award numbers are maintained in the
Gateway user profile database). There are additional factors that the glide-in factory considers, including expected
availability, expected runtime, and how many jobs are currently in the system. Jobs that are known to have a short
runtime are easily directed to local RENCI resources avoiding long queue wait times on the in-demand national
resources, and a submission of a very large number of jobs can be spread across TeraGrid, OSG, BASS and RENCI to
achieve the highest possible throughput, assuming access and policy compliance. Additional backend engines can
be added, including commercial providers such as Amazon EC2 and Microsoft Azure, which would be completely
transparent to the end users.

2.6 Late Binding of Jobs to Resources

Keeping the gateway and the job execution layers as two separate entities has enabled late binding of jobs to
resources. Neither the user nor the gateway layer should have to know (or care) where the job will run. The
burden of fault tolerance and issues such as a long queue wait time is the responsibility of the execution layer
(Condor and the glide-in factory) and is hidden from the user and gateway layer. Late binding, in different forms,
has proven to solve many usability problems and is becoming popular on both TeraGrid and OSG via systems such
as: MyCIusterN, Falkonls, Pegasus Corrallg, GlideinWMS, and PanDA%.

Fault tolerance is an important requirement for a Science Gateway, and is especially important to handle as
automatically as possible to mitigate troubleshooting efforts by gateway staff. Glide-ins and late binding provide a
first pass on verifying that a resource is currently fit for jobs. If the glide-in is stuck in a queue, or fails to set up the
environment and start, no jobs will be bound to the resource, and from the point of view of the user and gateway,
it is like the resource does not even exist. As with any complex, distributed, heterogeneous environment, systems
will be unavailable due to both scheduled and unscheduled events including: power outages, file system failures,
software problems, system maintenance, limited user disk space, network connectivity problems, etc. A cursory
review of the news@teragrid.org list for the month of April, 2009 indicates that: Abe was paused 7 times & had
scheduled maintenance once; Kraken was paused once, had unscheduled maintenance once, and rebooted 6 times
due to FS (Lustre) issues; Ranger had FS issues once; Queen Bee had FS issues once; ORNL NSTG was down once
for system maintenance; BigRed was down once due to system maintenance; Pople was down once due to system
maintenance; Cobalt was down once for scheduled system maintenance and once for unscheduled maintenance;
Mercury was down once for unscheduled maintenance; and all SDSC clusters were inaccessible for four hours due
to router maintenance. Most of these issues can be detected and handled automatically within the glide-in factory,
without any science gateway staff intervention. The science gateway users does not even know that issues like
these occur behind the gateway.

Because of this late binding, the per-job gateway auditing information requirements for the community account
cannot be captured until after that job has landed at a target resource. We also wish to capture metrics
information using kickstartn, which similarly must be collected and aggregated back to the gateway management
database as part of the remote job execution. The platform accomplishes this by wrapping the compute job with a

“phone-home” client as depicted in Figure 1 that invokes a gateway management web service as part of the job
execution, notifying the gateway of exactly where and when the job ran and how it performed. The phone-home
feature enables the platform to record in the job management layer exactly which TeraGrid resource was used for
every job, and performance metrics accumulated along the way are used by the glide-in factory to influence future
resource selection decisions.

2.7 Grid Credential Management

Another task for the glide-in factory is to manage X.509 credentials. Each of the backend infrastructures are using
X.509 grid credentials for authentication, but have different requirements on the extra information that must be
included in the proxies. For TeraGrid, the glide-in factory loads a TeraGrid Community Credential and adds a set of
SAML attributes® including portal user name, portal user email address, and authentication timestamp. For OSG,
voms-proxy-init is used to generate a proxy, again with SAML attributes, but in this case the attributes are derived
from the VO Management Service (VOMS)®. The platform currently does not submit to OSG sites that require
gLExec®, as the Science Portal users do not have individual X.509 user certificates, which are required for sites that
require glExec. For BASS and local RENCI systems, plain X.509 proxies are used without SAML attributes.

3. Example Engagements
3.1 Metagenomics: Generating Too Much Data to BLAST Locally

The RENCI Engagement team has worked with a metagenomics collaborative® seeking to identify new viruses. This
team contacted the RENCI Science Gateway team to learn about gaining access to TeraGrid resources to help with
a computational quandary. With the accessibility of genome sequencers such as those available from 454
Sequencingze, research labs are increasingly generating data at a rate beyond their capacity to process it locally. In
discussing their needs, together we determined that the best approach would be for us to develop a new Java Web
Start client application. This new science desktop would enable them to: 1) to point at a directory containing any
number of zip files, each containing hundreds of files, each file containing a sequence, each sequence representing
a single BLAST job; 2) configure the BLAST execution parameters; and 3) simply "say go”. This collaborative
regularly needs to process 100k+ BLAST jobs, has NSF/NIH funding, and a successful track record of identifying new
viruses and new scientific techniques. The science desktop developed during this engagement has been labeled
the BLASTMaster”’. Figure 2 below shows how the jobs were distributed by the execution layer of the platform for
one particular study conducted by the collaborative using BLASTMaster. In this case, the 96,866 individual
sequence files were grouped into roughly 480 zip files, which were transferred to the Gateway for execution by the
science desktop.

The determination of the approach to this engagement is a key point of the methodology, as we had walked
through a number of other potential usage models together with the researchers, with varying levels of
integration-with and interruption-of their existing process pipeline utilizing local resources. The negotiation
process is critical to ensure the best possible chance for a sustained impact, and to identify opportunities for high
leverage and impact. In talking with a number of other researchers, we believe that the BLASTMaster has a high
probability of evolving into widely used tool, and being responsible for meaningful impact.

Job Distribution for one Pyrosequencing Run
96,866 BLAST jobs total
4/29/2009- 5/7/2009

TeraGrid: Purdue
Steele
2%

TeraGrid: Purdue
Condor
24%

Figure 2: Distribution of BLAST jobs from one Pyrosequencing run, with the glide-in factory configured for:
three TeraGrid resources, one OSG resource, one RENCI resource, and one UNC-CH resource

The BLASTMaster Java Web Start desktop application relies upon the existing RENCI Science Portal infrastructure
including the asynchronous web services, user management, TeraGrid integration, etc. New capabilities that
required development for this engagement included multi-threaded job submission, monitoring, and results
fetching. These capabilities were built upon existing services in the platform to manage a large number of jobs with
a single submission. These new science desktop features are wholly applicable to any other application within the
gateway that shares this usage model, and is an example of a needs driven enhancement to the platform.

This one user engagement has the potential to quickly burn through the TeraGrid allocation that has been awarded
to the RENCI Science Portal in the form of a community account. However, having the community account
allocation was absolutely critical to lowering the barrier to entry for this collaborative, and enabled us to quickly
demonstrate value. As production runs ramp up, we must monitor allocation usage, and develop a plan for helping
this team become self sustaining. This could include: helping them through the process of acquiring their own
allocation which could be added into the Gateway for their use only; some form of new and unique linkage of
allocations and access that allows a gateway to operate on behalf of a user; a new mechanism allowign a user to
delegate a portion of their allocation to a gateway community account; or some new form of allocation made to a
gateway on behalf of a specific end user. There are a number of non-trivial issues yet to be resolved in providing
gateway services to users with their own credentials, such as the differences in the environment that is established
for the jobs under the users credential versus the gateway credential.

3.2 Natural Language Processing

The RENCI Engagement Team was approached by a researcher using Natural Language Processing techniques over
a corpus of 160k documents from the medical research domain. The challenge was that the computations could
not be completed in a timely manner for the research and education requirements. In this case, there were no new
additional features required of the platform except to add the Stanford Parser’ as a supported application, and
configure the deployment scripts that maintain applications in the RENCI community software area across the
TeraGrid resources. The end result was that in just a couple of days, the widely used Stanford Parser is now
available on the TeraGrid for large scale studies via: web services, portlets, and an easy to use Java Web Start client
application. Additionally, this application is now registered into the emerging TeraGrid Gateway WS Registry, thus
broadcasting its availability to a wider audience as the TG WS Registry becomes searchable and more widely used.

4. Conclusion and Future Plans

The leading goals for the RENCI Engagement Platform described in this paper include: scalability, maintainability,
policy aware workload/resource matching across disparate infrastructures, and most of all, accessibility and ease
of use for the research communities®. Coupled with our expertise in negotiating technical solutions with
researchers, we believe that this technology base provides a unique capability for rapidly ramping up
computationally based research from local lab/campus levels, to a national scale. Because the EIE-4Cl methodology
relies upon working closely with individual researchers and small teams, we are careful to guide any non-trivial
platform enhancement efforts to projects where there is evidence of strong leverage and broad applicability.

Future plans include investigating the meta-scheduling services emerging for the TeraGrid, such as the Condor-G
MatchMaking support30. We will also address an issue with the gateway auditing and accounting requirements
coupled with the currently available accounting mechanisms. The RENCI Gateway sends the required gateway
auditing information into the TeraGrid with the job itself in the form of SAML assertions as described in section 2.5
above. This is a very convenient mechanism in that the gateway has fulfilled all of its per-job auditing
responsibilities with the job submission itself. However, this becomes difficult when using glide-ins in combination
with a TeraGrid Community Account. To maintain compliance with community account policies, we have
implemented a policy whereby a glide-in to a TeraGrid resource can be used by exactly one gateway user, and that
gateway user’s information is embedded into the glide-in startup job via the SAML assertions. This limits many
benefits of using glide-ins, and the negative effect of this limitation increases as the number of simultaneously
active unique gateway users increases. We plan to pursue a dialog within the TeraGrid Gateway community to
assist in determining a reasonable solution.

Acknowledgements

We would like to thank Susan Miller, Chunlin Wang, and Eric Delwart for their direction and patience in refining
the BLASTMaster desktop application. We would like to thank Cathy Blake for her work in developing the
NLPDesktop (Stanford Parser). Finally, we would like to thank Edward Dale and Russell Taylor for providing access
to the UNC Computer Science BASS resource, and deploying new services to support our platform framework. This
research was done using resources provided by the TeraGrid, Open Science Grid, and BASS which are supported by
the National Science Foundation, the U.S. Department of Energy's Office of Science and the National Institutes of
Health.

References:

N, Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, S. Pamidighantam, "TeraGrid Science Gateways and Their
Impact on Science", IEEE Computer, Volume 41, Number 11 (November, 2008), pages 32-41.

2 https://twiki.grid.iu.edu/twiki/bin/view/Engagement/WebHome

* The Embedded Immersive Engagement for Cyberinfrastructure (EIE-4Cl) methodology is derived from RENCI’s
experience in the Open Science Grid (OSG) Engagement program, and is currently funded by NSF CI-TEAM

4 Ramakrishnan, L., M. S.C Reed, J. L. Tilson, D. A. Reed “Grid Portals for Bioinformatics” Second International
Workshop on Grid Computing Environments (GCE), Workshop at SC|06, Tampa, Florida (2006).
http://www.renci.org/wp-content/pub/ncbioportal/BioportalPaper-GCEFinal.pdf

> http://www.pasteur.fr/recherche/unites/sis/Pise/

® http://java.sun.com/docs/books/tutorial/java/java00/annotations.html
http://en.wikipedia.org/wiki/Method (computer science)
http://biomoby.open-bio.org/

7

8

° http://www.teragridforum.org/mediawiki/index.php?title=Science Gateways WSInfo
% http://www.cs.wisc.edu/condor/manual/v7.2/2 3Matchmaking with.html
" http://www.cs.wisc.edu/condor/
2 http://www.cs.wisc.edu/condor/birdbath/
B http://www.cs.wisc.edu/condor/manual/v7.3/5 4Glidein.html
" http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
© http://www.globus.org/toolkit/docs/4.0/execution/prewsgram/
'8 http://wwwx.cs.unc.edu/Research/bass/index.php/Main Page
7 http://www.tacc.utexas.edu/mycluster/
'8 http://dev.globus.org/wiki/Incubator/Falkon
' http://pegasus.isi.edu/corral/latest/
2 https://twiki.cern.ch/twiki/bin/view/Atlas/Panda
*! http://pegasus.isi.edu/publications/kickstart.pdf
*? http://www.teragridforum.org/mediawiki/index.php?title=Science_Gateway Credential with Attributes
% http://edg-wp2.web.cern.ch/edg-wp2/security/voms/voms.html
** http://vdt.cs.wisc.edu/components/glexec.html
% Eric Delwart: http://cancer.ucsf.edu/people/delwart_eric.php
Chunlin Wang: http://med.stanford.edu/sgtc/general/staff.html#wz
*® http://www.454.com/
%7 https://portal.renci.org/BLASTMasterDesktop/
%% http://nlp.stanford.edu/software/lex-parser.shtml

*° Michael Litzkow and Miron Livny, Experience with the Condor Distributed Batch System; Proceedings of the IEEE
Workshop on Experimental Distributed Systems; (October, 1990), Huntsville, AL
http://www.cs.wisc.edu/condor/doc/experience.pdf

%0 http://www.teragridforum.org/mediawiki/index.php?title=Schedwg condorg userguide

